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Abstract

In order to suppress numerical oscillations of linear compact schemes around discontinuities, a characteristic-based flux
splitting limited method is introduced instead of ENO/WENO or other shock-capturing algorithms. This method begins
with upwind schemes and flux vector splittings. The upwind schemes are projected along characteristic directions in a dif-
ferent way, and their amplitudes are carefully controlled by a special limiter in order to meet entropy condition and to
prevent non-physical oscillations. A fifth-order linear compact upwind scheme is modified by this method for solving prob-
lems involving discontinuities. The properties of the numerical algorithm are checked on some benchmark problems in
one, two and three space dimensions. Numerical results show that it is high-order accurate with high resolution and oscil-
lation-free.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Direct numerical simulations (DNS) of turbulence and large-eddy simulations (LES) require the use of high
accurate numerical schemes, which must be capable of resolving a very broad range of length scales that are
often orders of magnitude apart [1]. It is generally believed that the accurate simulation of fluid flow with mul-
tiple and wide range of spatial scales and structures is a difficult task expect through spectral approximations.
However, the use of spectral approximations is limited to simple geometries with generally periodic boundary
conditions. Compact algorithm makes it possible to devise, on a given stencil, difference schemes that have
much better resolution properties than conventional explicit difference schemes of comparable order of accu-
racy. Compact schemes with spectral-like resolution properties are more convenient to use than spectral and
pseudo-spectral schemes, and are easier to handle, especially when non-trivial geometries are involved. The
price paid is that one is required in general to invert a tri-diagonal system of linear algebra equation systems
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to obtain derivatives. Central compact schemes have been developed from the 70s of the last century (see for
instance [2,3]). However, centered algorithms are intrinsically non-dissipative, and cannot prevent odd–even
decoupling, which gives rise to high frequency oscillations even in smooth regions. Reducing or removing such
oscillations requires the introduction of dissipation terms. Asymmetric schemes with their dissipative proper-
ties are more stable. Fu and Ma [4], Adams and Shariff [5], Tolstykh and Lipavskii [6], Zhuang and Cheng [7]
have developed some compact upwind (dissipative) schemes. These schemes enjoy high-order accuracy and
high resolution for low wave numbers (large scale), while allowing much dissipation to high wave numbers
(small scale), and the dissipation can be adjusted by a careful design. In general, compact upwind schemes
can avoid odd–even decoupling and can prevent non-physical oscillations in smooth regions.

Recently, Chu and Fan [8] and Mahesh [9] have developed combined compact difference (CCD) schemes.
Their ideas are basically to produce a high-order scheme by combining and solving the first and second deriv-
atives together. The CCD schemes become more compact and more accurate than normal compact schemes.
Finite-volume compact schemes have also been attempted by Gaitonde and Shang [10] and Kobayashi [11].
Nevertheless, in the transonic and supersonic flow regions when dealing with flows involving shock waves,
one must use a numerical scheme which can both represent small scale structures with the minimum of numer-
ical dissipation and capture discontinuities with the robustness that is common to Godunov-type methods. To
achieve these dual objectives, high-order accurate shock-capturing schemes must be employed [12]. Unfortu-
nately, the overall dependency characteristic of compact schemes hinders them from this purpose application,
and the toughest difficulty is to capture the discontinuities smoothly in strong non-linear problems. Few
attempts have been made to achieve the shock-capturing capability for compact schemes. Cockburn and
Shu [13] have developed non-linearly stable compact schemes for shock calculations in 1994. They followed
TVD’s idea to define a non-linear limiter based on the local mean to avoid spurious oscillations while main-
taining the formal accuracy of the schemes. However, spurious oscillations were still evident in their numerical
test problems for their fourth-order scheme. An extended and improved version of Cockburn and Shu’s
scheme can be found in Yee’s paper [14], but no numerical tests are given. Ravichandran [15] has employed
a TVD limiter combined with kinetic flux vector splitting (KFVS) method to improve the stability of compact
upwind schemes, and third-order schemes were given, which is supposed to degenerate to first-order accuracy
at extrema. Deng and Zhang [16], Deng and Maekawa [17] have proposed some compact non-linear schemes
by employing dissipative terms and weighted interpolations, but their schemes have lost the compactness (e.g.
at least seven points are needed for their fifth-order schemes). Lerat and Corre [18] have employed residual-
based dissipations to suppress non-physical oscillations, and a third-order compact scheme was given for com-
pressible flows, but the scheme is only suitable for steady flows, and its applications to unsteady problems are
in development. Ma and Fu [19] have developed high-order compact schemes with the method of group veloc-
ity control. Among all those efforts, blending compact schemes with other shock-capturing schemes such as
ENO/WENO schemes is most common. ENO/WENO schemes [20–24] show great promise for accurately
treating flow discontinuities. These schemes can be used to achieve a uniformly high-order accuracy while
maintaining essentially non-oscillatory behavior for piecewise smooth functions by preventing the interpola-
tion of the field values across the discontinuities as much as possible. This is done through a reconstruction or
a flux evaluation procedure to allow the interpolating stencils to shift adaptively with the local smoothness of
the function. However, the numerical solutions obtained with ENO/WENO schemes in smooth regions with
moderately high field gradients are not very satisfactory (worse than padé schemes [30]). One way to eliminate
this disadvantage of ENO/WENO schemes is to construct a hybrid scheme in which the scheme is switched to
a conventional compact scheme in smooth regions and to an ENO/WENO scheme near/across discontinuities.
However, a free threshold parameter, which controls the switch between the compact scheme and the ENO/
WENO scheme, needs to be tuned, and some of the hybrid compact-ENO/WENO schemes [1,5] experience
non-smooth transitions near the interfaces where the scheme switches types. Some spurious waves might be
generated at these interfaces between different schemes, and these spurious waves would eventually propagate
into the smooth regions as reported by Adams and Shariff [5]. Ren et al. [25] have developed characteristic-
wise hybrid compact-WENO schemes, which can be regarded as an improvement of the scheme presented
in [1].

As pointed by Titarev and Toro [26], the design of high-order accurate numerical schemes for hyperbolic
conservation laws is a formidable task since three major difficulties have to be overcome: ensuring the conser-
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vation property, preserving the high order of accuracy in both time and space, and controlling the generation
of spurious oscillations in vicinity of discontinuities. In the present study, we try to overcome the difficulties
except the accuracy in time. Unlike the discontinuity-capturing methods mentioned above, a new character-
istic-based method is proposed to surmount the shortcomings of high-order linear compact schemes. The
organization of the paper is as follows: In Section 2, the characteristic-based method is given to suppress spu-
rious oscillations of linear upwind schemes which are applied to get an approximation of the first spatial deriv-
atives, and a shock-capturing scheme is formulated based on a fifth-order linear compact upwind scheme.
Some numerical test cases in one-dimensional and multi-dimensional Euler systems are presented and dis-
cussed in Section 3, including some comparisons with other high-order schemes, and the results show that
the characteristic-based shock-capturing compact scheme possesses the merits of the linear compact scheme,
e.g. spectral-like resolution, higher-order accuracy, etc. Finally, concluding remarks are provided in Section 4.

2. Characteristic-based shock-capturing method

2.1. Characteristic-based treatment

Consider a hyperbolic system of conservation laws
oQ
ot
þ oF ðQÞ

ox
¼ 0 ð1Þ
or its non-conservative form
oQ
ot
þ A

oQ
ox
¼ 0 ð2Þ
where A ¼ oF =oQ, and all the eigenvalues kðkÞ of A are real numbers. Let L and R be the left and right eigen-
vector matrices of A, then A ¼ RKL;R ¼ L�1 and K is the diagonal matrix of kðkÞ.

Let us discrete the space into uniform intervals of size Dx, and various quantities at xi will be identified by
the subscript i. No matter what kind of algorithms are employed, the semi-discretize scheme of Eq. (1) can be
written as
dQ
dt

� �
i

¼ �
ðHþiþ1=2 þ H�iþ1=2Þ � ðHþi�1=2 þ H�i�1=2Þ

Dxi
ð3Þ
where H�iþ1=2 can be regarded as the negative/positive numerical flux at an interface between two conterminous
cells, and different schemes will give different definitions for them.

The flux F of Eq. (1) can be split by a flux vector splitting method (in this paper, Steger–Warming splitting),
and F ¼ F þ þ F � such that F �i can be regarded as the average positive/negative fluxes in the ith grid cell. Then
Hþiþ1=2 � F þi and F �iþ1 � H�iþ1=2 indicate the flowing status of the fluxes. Let us project the flowing fluxes along
characteristic directions by defining
DWþ
iþ1=2 ¼ Ll

iþ1=2ðHþiþ1=2 � F þi Þ; DW�
iþ1=2 ¼ Lr

iþ1=2ðF �iþ1 � H�iþ1=2Þ ð4Þ
where Ll
iþ1=2and Lr

iþ1=2 are the left eigenvector matrices of Al
iþ1=2 and Ar

iþ1=2, respectively. The right eigenvector

matrices Rl
iþ1=2 ¼ ðLl

iþ1=2Þ
�1 and Rr

iþ1=2 ¼ ðLr
iþ1=2Þ

�1. The definition of Al
iþ1=2 and Ar

iþ1=2 will be given later.
W�

iþ1=2 are similar to the characteristic variables, and their difference form, DW�
iþ1=2, are related to the

amplitudes of the characteristic waves. When the same class of characteristics intersects, according to entropy
criterion, some information must be lost with intersecting characteristics, namely, the amplitudes of the char-
acteristic waves decrease non-linearly. Furthermore, non-physical solutions (spurious oscillations) may appear
in flow fields even though no intersecting characteristics taking place. So, some kind of limiter function u
should be formulated to describe the damping phenomenon and prevent non-physical oscillations. The mod-
ified characteristic decompositions are
dWþ
iþ1=2 ¼ uðDWþ

iþ1=2;DŴ
þ
iþ1=2;DŴ

þ
i�1=2Þ; dW�

iþ1=2 ¼ uðDW�
iþ1=2;DŴ

�
iþ1=2;DŴ

�
iþ3=2Þ ð5Þ
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where u is a limiter and DŴþ
iþ1=2 ¼ Ll

iþ1=2ðF þiþ1 � F þi Þ;DŴ�
iþ1=2 ¼ Lr

iþ1=2ðF �iþ1 � F �i Þ, are the coarse approxima-
tions of the flowing fluxes in the characteristic directions. Eq. (5) is similar to Eq. (2.12) of [15], the differences
being the limiter and the premultiplication of flux differences by the left eigenvector matrix.

In this paper, we use the second limiter listed in [27]
uða; b; cÞ ¼ signðaÞ �min jaj; jbj; 2bc
jajþjcjþe

� �
if a; b and c have the same sign

0 others

(
ð6Þ
where a, b and c are the three components in Eq. (5), respectively, which are non-exchangeable, and e! 0 is a
small positive parameter employed to avoid division by zero. Our experiences show that it has no effect on the
accuracy if it is less than 1E�7. In this paper, e ¼ 1E�9.

Now, the scheme can be converted back to conservative form:
Hþiþ1=2 ¼ F þi þ Rl
iþ1=2dW

þ
iþ1=2; H�iþ1=2 ¼ F �iþ1 � Rr

iþ1=2dW
�
iþ1=2 ð7Þ
Then the modified semi-discretize scheme can be given by
dQ
dt

� �
i

¼ �
ðHþiþ1=2 þ H�iþ1=2Þ � ðHþi�1=2 þ H�i�1=2Þ

Dxi
ð8Þ
Eq. (8) is the characteristic-based shock-capturing scheme. It benefits from the following mature techniques:
upwind method and flux splitting, characteristic decomposition, and limiters which are widely used in TVD
schemes.

2.2. Choosing Al
iþ1=2 and Ar

iþ1=2

A natural choice is Al
iþ1=2 ¼ Ar

iþ1=2 ¼ Aiþ1=2 at each fixed xiþ1=2. Aiþ1=2 can be calculated by a simple arithmet-
ical mean, or Roe average, of Aj and Ajþ1. However, we propose Al

iþ1=2 ¼ Ai ¼ AðQiÞ and
Ar

iþ1=2 ¼ Aiþ1 ¼ AðQiþ1Þ, which is more convenient and stable. After every given Al
iþ1=2 and Ar

iþ1=2, their left
and right eigenvector matrices are obvious, for example Ll

iþ1=2 ¼ LðQiÞ and Lr
iþ1=2 ¼ LðQiþ1Þ.

Numerical tests show that the difference of the definition of Al
iþ1=2 and Ar

iþ1=2 has little influence on the
numerical solutions. The main reason may be that Al

iþ1=2 and Ar
iþ1=2 do not appear explicitly, and their left

and right eigenvector matrices appear together. Namely, the left eigenvector matrices are used to project
the variables along the characteristic directions, and their corresponding right eigenvector matrices are used
to convert the limited components back into their original forms.

2.3. A fifth-order upwind compact scheme

H�jþ1=2 (In Eqs. (3) and (4)) can be acquired by many high-order schemes. Because compact schemes possess
the merits of spectral-like resolution, higher-order accuracy in fewer grid stencils, and easier for boundary clo-
sure, a fifth-order linear compact upwind scheme is cited.
9Hþi�1=2 þ 18Hþiþ1=2 þ 3Hþiþ3=2 ¼ 10F þiþ1 þ 19F þi þ F þi�1 ð9aÞ
3H�i�1=2 þ 18H�iþ1=2 þ 9H�iþ3=2 ¼ F �iþ2 þ 19F �iþ1 þ 10F �i ð9bÞ
The fifth-order compact scheme has also been used by many other authors, e.g. [1,25]. Pirozzoli [1] has also
made a detailed analysis of the scheme, and the results show its excellent resolution properties. It is clear that
the linear compact schemes will cause non-physical oscillations (Gibbs phenomena) when they are applied di-
rectly to flow with discontinuities, and the oscillations do not decay when the grid is refined. In this case, we can
modify the linear scheme by the method given in 2.1. It is evident that the linear compact scheme is based on
four-grid stencils and the characteristic-based method does not extend the stencils. The steps for the method are

(1) Solve Eq. (9) for H�iþ1=2 (linear compact scheme);

(2) Solve Eq. (4) for DW�
iþ1=2 (project onto the characteristic fields);
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(3) Solve Eq. (5) for dW�
iþ1=2 with the limiter (6) (limiting the projected components);

(4) Solve Eq. (7) for H�iþ1=2 (project back) and get the semi-discretize scheme (8).

2.4. Extension to multi-dimensions in general coordinates

The Euler equations in three-dimensional general coordinate system may be written as
oeQ
ot
þ oF n

on
þ oF g

og
þ oF f

of
¼ 0 ð10Þ
where the superscripts n, g and f denote the variables in n, g and f directions, respectively, and
eQ ¼ Q=J

F n ¼ ðnxF
x þ nyF

y þ nzF
zÞ=J

F g ¼ ðgxF
x þ gyF

y þ gzF
zÞ=J

F f ¼ ðfxF
x þ fyF

y þ fzF
zÞ=J
Q denotes the conservative variables. Fx, Fy and Fz are the flux vectors in x, y and z directions, respectively. J is
the Jacobian of the transformation.

The proposed shock-capturing scheme is subsequently achieved by using the reconstruction relations for
the n, g and f directions separately. For example, in the n direction, let An ¼ oF n=oeQ; Ln and Rn be the left
and right eigenvector matrices of An; F nþ

i and F n�
i be the splittings of F n

i , if we replace, in Eqs. (4)–(7) and
(9), H�iþ1=2 with H n�

iþ1=2; F
�
i with F n�

i ; Ll
iþ1=2 with Lnl

iþ1=2, and so forth, we can get the discretization of oF n=on
oF n

on

� �
i

¼
ðH nþ

iþ1=2 þ H n�
iþ1=2Þ � ðH

nþ
i�1=2 þ H n�

i�1=2Þ
Dni

ð11Þ
The semi-discretization of Eq. (10) can be given by
deQ
dt

 !
i;j;k

¼ �
H nþ

iþ1=2;j;k þ H n�
iþ1=2;j;k � H nþ

i�1=2;j;k � H n�
i�1=2;j;k

Dni;j;k
�

H gþ
i;jþ1=2;k þ H g�

i;jþ1=2;k � H gþ
i;j�1=2;k � H g�

i;j�1=2;k

Dgi;j;k

�
H fþ

i;j;kþ1=2 þ H f�
i;j;kþ1=2 � H fþ

i;j;k�1=2 � H f�
i;j;k�1=2

Dni;j;k
ð12Þ
where the subscripts i, j and k denote the positions in the n, g and f directions, respectively.
In the following sections, we will discuss the application of the characteristic-based conservative compact

scheme (denoted by CC5-C-B) for some benchmark cases in one, two and three dimensions.

3. Numerical tests

For the motion of inviscid compressible fluids, the elements in Eq. (1) are
Q ¼ ½q; q~u; qe�; F ¼ ½divðq~uÞ; divðq~u�~uÞ þ rp; divðqe~uþ p~uÞ�
where q is the fluid density,~u is the velocity and e is the total energy, defined as the sum of the internal energy
plus the kinetic energy. The system is closed by defining the pressure p through the equation of state for a per-
fect gas, p ¼ qeðc� 1Þ, where the constant c is the ratio of specific heats. In all our tests considered, c ¼ 1:4.

In this paper, the temporal derivative is discretized by the third-order TVD type Runge–Kutta method pre-
sented in [21]
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3.1. 1D Euler system

3.1.1. Lax shock tube

The first test case is the Riemann problem proposed by Lax. The initial condition is ðq; u; pÞL ¼ ð0:445;
0:698; 3:528Þ and ðq; u; pÞR ¼ ð0:5; 0; 0:571Þ. We have computed the solution up to t = 0.8 with 100 cells.
The results are shown in Fig. 1. It can be observed that the accuracy of the CC5-C-B scheme is comparable
to the OSMP7 scheme [12], and the result of CC5-C-B is better than that of WENO-RF-5 (fifth order [28]).
The WENO-RF-5 and other WENO schemes in [22,28] are more diffusive around the discontinuities than the
CC5-C-B scheme is. We would like to point out that, according to our experience and [12,28], this case is
demanding of the robustness of schemes because the shock wave is rather strong, and oscillations can appear
for some non-characteristic-based schemes.

3.1.2. Shock-wave interacting with a density disturbance

In the previous test case, we have shown the good shock-capturing capability and robustness of the CC5-C-
B scheme. As it is well known, limiters will degenerate the accuracy at extrema, we will check out how the
scheme performs at extrema by calculating the problem of a shock-wave interaction. In this test (also called
Shu–Osher problem), which was proposed in [22], a moving Mach 3 shock interacts with a sinusoidal density
profile. The 1D Euler equations are solved on the spatial domain x 2 ½�5; 5�. The initial condition is
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Fig. 1. Density distributions for the Lax test: (a) The fifth-order characteristic-based conservative compact scheme (CC5-C-B); (b) The
fifth-order WENO scheme presented in [28]; (c) The seventh-order OSMP scheme presented in [12].
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ðq; u; pÞ ¼
ð3:857143; 2:629369; 10:3333333Þ if x 6 �4

ð1þ 0:2 sinð5xÞ; 0; 1Þ if x > �4

�

The solution is advanced in time up to t = 1.8. The computed density fields are reported in Fig. 2, in which

the solids lines are grid independent solutions. By comparing Fig. 2(b) with (c) and (d), it can be found that the
CC5-C-B scheme gives much better resolution than the third-order compact-TVD scheme [15] does, and the
limiter (6) holds higher accuracy than the minmod limiter does. By further comparing Fig. 2(a) with the results
in [1], where the fifth-order WENO (Fig. 10, W5), the seventh-order WENO (Fig. 10, W7) and the hybrid com-
pact-WENO (Fig. 10, H5 and H7) schemes are used for the calculations, we can find the following differences:
(1) The CC5-C-B scheme gives better resolution for both the acoustic waves and the entropy waves than that
of the fifth-order WENO schemes. (2) The hybrid schemes give the highest resolution for the entropy waves,
but, (3) there are some oscillations in their solutions. (4) The CC5-C-B scheme gives the best solution for the
acoustic waves.

3.1.3. A convergence test

In the previous test cases, the robustness, good shock-capturing capability and high resolving power of the
CC5-C-B scheme have been shown. In this test case, attentions are focused on its performance in a smooth
region which contains a density disturbance. The initial condition is ðq; u; pÞ ¼ ð1þ 0:2 sinðxÞ; 1; 1Þ. The exact
solution is ðq; u; pÞ ¼ ð1þ 0:2 sinðx� tÞ; 1; 1Þ. The computational domain is taken to be [0, 2p] with periodic
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Solutions of the Shu–Osher problem at t = 0.18. (a) CC5-C-B, 200 cells; (b) CC5-C-B, 400 cells; (c) Third-order compact-TVD [15],
lls; (d) Fifth-order compact scheme with minmod limiter, 400 cells.
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boundary conditions. A uniformly spaced grid has been used with a time step which is varied with the grid length
h, Dt ¼ h3, so as to rule out the time discretization error. The solution has been advanced in time up to t = 2. The
convergence evaluation is shown in Fig. 3. For reference purposes, the lines with N�4 (solid) and N�5 (dashed)
slopes are also shown. The figure indicates that the asymptotic convergence rate of the CC5-C-B scheme on
coarse grids is similar to N�4. However, on fined meshes (N > 85), the convergence rate is slightly slower than
N�4. As shown in [1], the convergence rate of the linear compact scheme is N�5. In order to check out the reason
of the slow convergence rate of the CC5-C-B scheme, we show in Fig. 4 the computed solution of density and its
error. It can be found that the dominated errors appear near the extrema where Dq changes its sign. Therefore
the limier (6) will make the CC5-C-B scheme to deviate away from the linear compact scheme. Since the limier
(6) is necessary for discontinuities-capturing, a way to mitigate the disadvantage of the CC5-C-B scheme is to
turn off the limiter in smooth regions (such as the subsonic region of a boundary flow).

3.2. 2D Euler system

3.2.1. 2D Riemann problems

Following the notation introduced in [29], the results were obtained for configuration 5 and configuration
16. The initial conditions for configuration 5 and configuration 16 are shown in Fig. 5. Two sets of grid are
tested, one is 200 · 200, and the other is 400 · 400.
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Fig. 3. Convergence test. h: L1 error of q, n: L1 error of u, s: L1 error of p.
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Fig. 5. Left: Initial condition for configuration 5; Right: Initial condition for configuration 16.
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The results for configuration 5 are shown in Fig. 6 at time t = 0.23. There are four interacting contact dis-
continuities, and the contour levels are 20 from min. to max. values. When comparing Fig. 6(a) and (b) with
the corresponding figures of Fig. 4.9 in [29], it can be found that the central WENO scheme reported in [29] is
more diffusive around the contact discontinuities than that of the CC5-C-B scheme, and away from the dis-
continuities, CC5-C-B holds higher resolution for small scale structures.

Configuration 16 initial data results in two contact discontinuities, a rarefaction and a shock wave. The
results at t = 0.2 are shown in Fig. 7. The contour levels are 16 from min. to max. values. It can be seen that
the shock is sharp, and the resolution of the two contact discontinuities is also good. Moreover, the spurious
oscillations are very low even though the wave pattern is complex. When comparing our results with Fig. 4.12
of [29], it can be found that the CC5-C-B scheme gives better results on the 200 · 200 grid than that of the
fourth-order central WENO scheme on the 400 · 400 grid.

3.2.2. Shock–vortex interactions

This model problem describes the interaction between a stationary shock and a vortex. The computational
domain is taken to be [0, 2] · [0,1]. A stationary Mach 1.1 shock is positioned at x = 0.5 and normal to the x-axis.
Its left state is ðu; v; p; qÞ ¼ ð1:1 ffiffiffi

c
p
; 0; 1; 1Þ, and its right state is defined by Rankine–Hugoniot relations. A small

vortex is superposed to the flow and centers at ðxc; ycÞ ¼ ð0:25; 0:5Þ. The vortex is described as a perturbation to
the velocity (u,v), entropy S ¼ lnðp=qcÞ, and temperature ðT ¼ p=qÞ of the main flow, u0 ¼ eseað1�s2Þ sin h; v0 ¼
�eseað1�s2Þ cos h; S0 ¼ 0; T 0 ¼ �ðc� 1Þe2e2að1�s2Þ=ð4acÞ, where s ¼ r=rc; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xcÞ2 þ ðy � ycÞ

2
q

, rc is the criti-
cal radius for which the vortex has the maximum strength. In this test, rc ¼ 0:05; e ¼ 0:3 and a ¼ 0:204. The
upper and lower boundaries are set to be reflective.
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Fig. 6. Density contour maps at time t = 0.23 for the initial data reported in the left map of Fig. 5. (a) 200 · 200 grid and (b) 400 · 400
grid.
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Fig. 7. Density contour maps at time t = 0.2 for the initial data reported in the right map of Fig. 5. (a) 200 · 200 grid and (b) 400 · 400
grid.
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Similar test has been described by Jiang and Shu [28] and the references therein. In order to gain a fine res-
olution, they often use a refined grid in x-direction around the shock wave. We use a mean grid of 200 · 100.
Then the radius of the vortex core is five cells long, while about one to two cells are needed for the CC5-C-B
scheme to capture shock waves. So when the vortex going through the shock wave, its core is contaminated by
the shock (Fig. 8, t = 0.2) even though the phenomenon of the curved shock is still clear, and the restoration of
the vortex is perfect. At t = 0.35, the interactions between the shock wave and the vortex produce a Mach
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Fig. 8. Pressure contours of the 2D shock–vortex interactions. (a)–(c) Thirty contour levels from min. to max. values; (d) Ninety contour
levels from 1.19 to 1.37; (e) Ninety contour levels from min. to max. values. (a) t = 0.05, (b) t = 0.2, (c) t = 0.35, (d) t = 0.6 and (e) t = 0.8.
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structure. This structure is evidently captured by the CC5-C-B scheme on the relatively coarse grid. To appre-
ciate the scheme further, at t = 0.6 and t = 0.8, the reflections near the lower and upper borders are well cap-
tured. Comparing with the results of Jiang and Shu [28, Fig. 15], in which fifth-order WENO schemes are used
with the grid of 251 · 100, it is clear that our results are better in the sense that less numerical noise is gener-
ated as well as the boundary-reflected waves are captured more clearly.

3.2.3. Double mach reflection

The computational domain for this problem is chosen to be [0,4] · [0, 1]. The problem involves a right-
moving Mach 10 shock wave, which initially makes a 60� angle with the horizontal axis. The shock
intersects the axis at x = 1/6. The region from x = 0 to x = 1/6 is always assigned the exact post-shock con-
dition. The region x 2 ½1=6; 4� is a reflecting wall. The exact solution is set up and driven at the top of the
domain. The computation stops at time t = 0.2. It is a difficult test case involving both strong shocks and
multiple stems. A jet forms along the wall, which is also difficult to be calculated properly. A detailed
description of this problem can be found in [31].

Three grids have been used in our tests: 240 · 59, 480 · 119 and 800 · 200. The density contours of the part
domain [0,3] · [0, 1] are shown in Figs. 9–11. The enlarged portion of Fig. 11 is also shown in Fig. 12. It is
noticeable that there is a very strong increase in resolution as the cell dimensions fined due to the high-order
accuracy and high resolution of the compact scheme. When comparing Figs. 9 and 10 with Figs. 12 and 13 of
[28], respectively, it can be found that the CC5-C-B scheme gives much better solutions than all the WENO/
ENO schemes do in [28]. In Figs. 11 and 12, the contour levels are set to be 50, so as to be compared more
precisely with the result obtained by Ren et al. [25]. Comparing Fig. 11 with Figs. 4, 6, 8 and 10 of [25], and
comparing Fig. 12 with Figs. 5, 7, 9 and 11 of [25], one can find that the CC5-C-B scheme also gives more clear
results with higher resolution than the hybrid Compact-WENO schemes do in [25]. In some references, the
‘carbuncle phenomenon’ will occur around the point where the normal shock meets the wall (see, e.g. [25]).
Our results show that the CC5-C-B scheme is free from this phenomenon. The results given in [12,25] show
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Fig. 10. Density on the 480 · 119 grid, 30 equally spaced contours.

Fig. 9. Density on the 240 · 59 grid, 30 equally spaced contours.
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some small oscillations in the nearly stationary zone underneath the curved shock wave. The oscillations in
our results are smaller, which shows the robustness of the CC5-C-B scheme. A further comparison of our
result on the 800 · 200 grid with Daru’s result [12] on the 960 · 240 grid indicates that the CC5-C-B scheme
is better than the seventh-order OSMP7 scheme in the sense that CC5-C-B has less spurious oscillations and
higher resolution.

3.2.4. Supersonic flow past a cylinder

In this test, the CC5-C-B scheme has been used to simulate a Mach 4 flow past a cylinder. In the physical
space, a cylinder of unit radius is positioned at the origin on an x–y plane. And the x–y orthogonal coordinate
system is transformed to a curvilinear coordinate system. A uniform mesh of 60 · 60 is used. The reflective
boundary condition is imposed at the surface of the cylinder, the inflow boundary condition is constant as
the incoming flow condition, and the outflow condition is given by second-order extrapolated values from
the internal flow field.

The pressure and density contours obtained by the CC5-C-B scheme are shown in Fig. 13(a) and (b),
respectively. It is clear that the scheme shows good capability in capturing the stationary bone shock waves.
The pressure and velocity distributions along the stagnation stream line are given in Fig. 13(c), which clearly
shows the sharp resolution of the shock and the oscillation-free result. The exact pressure value at the stag-
nation point is 0.94054. In our test the numerical result is also 0.94054.

3.3. 3D Euler system

In this test, a spherical Riemann problem between two parallel walls at z = 0 and z = 1 is considered. The
sphere is centered at (0, 0,0.4) with radius 0.2. Initially the gas is at rest with density q ¼ 1 and pressure
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p ¼ 1 if r > 0:2

p ¼ 5 else

�

The jump in pressure results in a strong outward moving shock wave and contact discontinuity and an inward
moving rarefaction wave. This inward moving wave causes a local ‘‘implosion’’, and a second outward moving
shock wave is created [32]. The interactions between theses waves and between waves and the walls are difficult
to be captured correctly. Usually, flux splitting-based schemes have difficult to accurately simulate the near
stationary low density region in the center of the domain.

The evolution of the flow field will remain cylindrically symmetric. Therefore it is possible to formulate this as
a two-dimensional problem with a source term. Langseth and LeVeque [32] have studied this case in both cylin-
drical coordinate system and 3D orthogonal coordinate system. The later coordinate system is chosen in the cur-
rent paper. Due to the symmetry, the computational domain is chosen to be ðx; y; zÞ 2 ½0; 1:5� � ½0; 1:5� � ½0; 1�.
Two grids have been used in our tests: 75 · 75 · 50 and 150 · 150 · 100. The pressure in the x–z plane at t = 0.7
are shown in Fig. 14. In Fig. 15, the pressure is plotted against the distance from the axis at z = 0.4 and t = 0.7. A
comparison with the results of [32] (Figs. 6 and 7) shows that the CC5-C-B scheme gives sharper resolution for
the shock waves and holds higher accuracy for extrema than that of [32].
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4. Conclusions

A characteristic-based shock-capturing scheme has been formulated. Compactness, high-order accuracy
and high resolution are achieved attribute to the characteristic-based method and the high-order compact
algorithm. Without implementing of other shock-capturing schemes, the scheme possesses the advantages
of linear compact schemes of spectral-like resolution, higher-order accuracy, and easy for boundary closure.
The proposed algorithm has been shown to yield oscillation-free and high-order accurate results in our test
cases.

Numerical tests in one-dimensional and multi-dimensional Euler system have been performed, and compar-
isons with some other high-order schemes have also been made. The following conclusions about the CC5-C-B
scheme can be obtained:

� The presented characteristics-based method can effectively suppress non-physical oscillations;
� Sharper representations of discontinuities may be obtained by it with robustness than those by the ENO/

WENO or compact-ENO/WENO schemes noted in articles of the references.
� The scheme shows good capacity in the resolution of small scale flow structures.
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